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D I S C R E T E  N O N L I N E A R - D I S P E R S I O N  S H A L L O W - W A T E R  M O D E L  

A. M. Frank UDC 532.59 

The discrete approach to the formulation of numerical continuum mechanics models has recently expanded significantly. 

Following the first works [1, 2], there appeared discrete gasdynamic, magnetohydrodynamic, ideal compressible fluid, and 
deformable solid models, utilizing the fundamental conservation laws with any number of degrees of freedom. These models 
are basically formulated for quite general cases of medium motion, and in the incompressible fluid case, for example, they are 

the discrete analogs of the complete Euler equations. An exception is [3], in which a discrete nonlinear shallow-water model 

without dispersion is formulated. For the two-dimensional discrete incompressible fluid model, proposed in [4], in the calculation 

of solitary waves on a coarse mesh there was noted its definite similarity with the nonlinear-dispersion shallow-water models. 

The study of the dispersion relationship of this model for the problem of linear waves in a fluid of finite depth showed that by 
selecting the mesh parameters we can control in wide limits the dispersion properties of the model, obtaining both the exact law 
oJ 2 = ktanh(k) inthe limitasthe mesh spacing h --- 0 and a law very close to ca 2 = k2/(1 + k2/3) for moderate values of h. Thus 

the model of [4] is an example of a discrete mathematical model, which with the use of detailed spatial discretization is the f'mite- 

dimensional analog of the complete Euler equations, and with the use of coarser discretization is the analog of the nonlinear- 
dispersion shallow-water equations. However, it is found that in the framework of this discrete approach we can directly 
formulate a simpler nonlinear-dispersion shallow-water model, which, just as in the continuum case, has lower dimensionality 
and therefore is more convenient and economical in the modeling of long waves. 

1. Equations of Motion. We shall examine the problem of long gravitational wave motion in an inviscid incompressible 

fluid above a nonplane bottom. We break the fluid layer into the elementary liquid volumes V i (Fig. 1). In accordance with the 
conventional concepts in shallow-water theory, we shall consider that the fluid velocity component parallel to the bottom varies 
weakly with depth, and by yirtue of the continuity equation the velocity component normal to the bottom varies with depth from 
zero to some value at the surface, following a nearly linear law. With this distribution of the velocities the shear deformation 

of the volumes V i is not large, and therefore we can try to describe this flow as the motion of an ensemble of volumes V i, each 
of which is examined as a material particle, traveling without friction along the bottom and having the mass m i = p V  i and two 
degrees of freedom; ~i is the coordinate along the curve describing the bottom relief, and a i is the characteristic thickness of 
the fluid layer along the normal to the bottom. We write the kinetic energy of this system with account for the foregoing 

assumptions approximately in the form 

1 
7" = i y~ m, (~2 + ~6/~), (1.1) 

i 

where c~ is a coefficient that arises upon integrating the square of the fluid velocity component normal to the bottom through 

the volume V i, equal to 1/3 in the case of linear variation of this velocity component along the normal. 
For tracking the position of the free boundary it is convenient to introduce the special nonmaterial marker-particles S i 

(Fig. 1) with the Cartesian coordinates x i and Yi- .Then we represent the potential energy of the discrete system similarly to [4] 

a s  

ri = f f pgydxdy. (i.~) 
G 
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Fig. 1 

Here p is the fluid density; g is the free-fall acceleration; 1] is the region occupied by the fluid if we take the broken line drawn 

through S i as the free boundary. It is clear that II  depends on the coordinates of the markers and that this relationship is easily 

calculated in explicit form. Thus, in the case of a channel with vertical side walls we have 

N-I  
ri = 1-io + ~ S' 6 /=~ (X'§ --  X~) (y2 + Y, Yi+I + Y~/§ 

where II o depends only on the choice of the Cartesian coordinate system origin. 

It is also convenient to introduce the discrete incompressibility condition, guaranteeing exact conservation of the fluid 
volume, with the aid of  markers. In the subsequent arguments and numerical calculations we use the condition 

Vj§ m. VOj§ m c o n s t .  (1.3) 

Here Vj+1c 2 is the volume that is cut from the fluid layer by the vertical lines drawn from Sj and Sj+ 1 (see Fig. 1). It is clear 

that in principle other partitioning techniques are also possible. The relations (1.3) are holonomic constraints, therefore the 

Lagrangian of the examined system takes the form 

o (1.4) L = T - FI + ~ )-~+1/2 (V~+t/2 - V~+I,2), 
s 

where Xs+ u2 are the Lagrange multipliers. 

Here the degrees of  freedom are ~i, ~ xi, Yi, therefore it is necessary to further introduce some closing relations, 

connecting the motion of  the markers with the averaged motion of the fluid. We use as these relations the nonholonomic 

constraints of the form 

6x; = ~ ;  cos ~o; - ~o; sin qvi, ~y; = ~ i  sin q9; + 6o; cos ~o~ (1.5) 

fia i is the slope of  the tangent to the bottom at the point xi). Let d(x) denote the undisturbed fluid depth, then tan ~i = -dx(xi). 

The constraints (1.5) postulate that the markers move as liquid particles on the free boundary with account for the shaUow-water 

approximation. 

The relations (1.1)-(1.5) completely define the motion of the system. Selecting (~i and ~a i as the independent variations, 
we easily obtain from the Hamilton principle the following Lagrange equations: 

mi~i dF OF . = ~ cos ~; + ~ sm ~o,., 

OF OF 
~ m , 5 ;  = - ~ sin ~o i + ~ cos ~o,., 

F = ~.. ~.,+l,2V,§ - FI, -~l = nl = ~; cos qo,. - 5t sin ~o~, 
s 

Yi = vl = ~i sin h% + 6t cos ~o;, Vs+t/2 = V,+t/2.~ 

(1.6) 

We shall present some other formulas. If we select the Cartesian coordinate system so that y = 0 corresponds to the undisturbed 

free surface, then we have for the general position marker 
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on = ~ (y,_~ _ y,+~) (y,_~ + y, + y~+O, 

d x ,  6 

o n  = p g [(xk+t - xk-0 (Yk-l + 2y,) + (Xk§ -- Xk) (Yk+l -- Yk-0 ], 
Oyk 6 

1 
Vs+t/2 = i (xs+t - x~) (ys + d (xs) + Ys§ + d (xs+l)). 

(I .7) 

By virtue of  the known theorems of classical mechanics, the system (1.6) exhibits the total energy conservation law, 

and for the case of a smooth bottom in the absence of side walls or for the case of a localized disturbance it also exhibits the 

law of conservation of  the horizontal component of the momentum. 

For  the system (1.6), similarly to the contiuum case, we can study the dispersion of  linear harmonic surface waves in 

an infinite fluid layer of  depth d = const. We introduce dimensionless variables with the aid of  the length scale d and the 

velocity scale U = ~ and distribute the particles on the surface of the undisturbed layer uniformly with the dimensionless 

spacing h. Then, linearizing (1.6) and (1.7) in the vicinity of the state of rest, we can obtain the following exact law of 

dispersion of  the linear waves: 

cA) 2 = m 

2 kh 
2 + cos kh 4 tg -~- 

3 2 th ,~2 ( 1 . 8 )  
4 t r i g  -~--+ 

(w and k are the dimensionless wave frequency and wavenumber). In the limit as h --, 0 

k 2 
t~ 2 = ~ (1.9) 

1 + r 2 " 

For cx = 1/3 the expression (1.9) is the known dispersion relation, characteristic for many nonlinear-dispersion shallow- 

water models. By slightly varying e~ in the vicinity of the value 1/3, we can obtain from (1.8) in a certain wavenumber interval 

an even better approximation of  the exact dispersion law for linear waves off = ktanh(kh). Figure 2 shows two dispersion curves 

(1.8) with h = 0.3 (curves 2 and 4 for c~ = 0.27 and 1/3) in comparison with the exact law (curve 1) and the law (1.9) with 

= 1/3 (curve 3). The wavenumber interval is selected so that the shortest waves have a dimensionless length X = 2~r/k = 

3, in this case 10 cells of  the discrete model grid correspond to one length of this wave. We see that the selection ~ = 0.27 

yields a far better approximation of the exact law than (1.9) with ~ = 1/3. We note that reduction of  ot relative to 1/3 for the 

short waves is physically justified, since in these waves the vertical velocity decreases faster with depth than a linear function. 

We shall now show how the equations (1.6), (1.7) themselves transform as h --, 0. For  simplicity we shall examine the 

case d(x) = const, then 9i = 0, x i = ~i, Yi = oi. We shall consider that in the state of rest all the particles are distributed 

uniformly with the spacing h, i.e., all the m i are the same and equal to m i = lad. We introduce the Lagrangian coordinate of 

the particles q, where qi = ih, and also the total depth H = y + d. Differentiating the constraints (1.3) with respect to time 

and considering (1.7), we obtain 

(y~ + y~+t + 2d) (u,+t - u,) + (x~+t - x~) (v~+~ + v~) = O. (1.10) 

As h --,. 0 we have, respectively, from (1.3) and (1.10) 

Ox d 
Oq = ~;  (1. I i) 

Ou Ox 
. - -  + u _--  = o .  (1 �9 12  ) Oq Oq 

The first two equations (1.6) yield in the limit 

( 1 . 1 3 )  
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Ox dx 
~db = k ~ - gy ~ .  (1.14) 

Introducing, as usual, the free surface vertical rise function ~/(t, x(t, q)) = y(t, q) and considering that the total derivative with 

respect to time D~/ = ~ = ~/t + UT/x = v, we f'maUy obtain from (1.11)-(1.14) 

r 1,+ (Hu) .= O, 

Du + gq .  = - H (H2D2q)~" (1.15) 

The system (1.15) with ~x = 1/3 is the well-known nonlinear-dispersion shallow-water model for waves of finite 

amplitude [5]. It was presented in this form in [6]. Thus, in the case of a smooth bottom and with ~x = 1/3 the discrete model 

formulated above actually is a fully conservative difference scheme in Lagrangian coordinates for the equations that are 

equivalent to those of  [5]. The derivation of these equations presented above is simpler. However, if our objective is numerical 

modeling, then formulation of the fully conservative scheme for the equations in the form (1.15) is not a trivial problem. We 

further note that the sequence that is usual for numerical modeling is run through here in the reverse direction, i.e., we first 

derived the discrete numerical model and only then the corresponding continuum model. 

In the case of  a nonsmooth bottom for a sufficiently smooth depth function d(x) the limiting equations can be reduced 

to the analogous form 

+ (/r = 0, 
ct 2 

Du + g'r k =  - ~ ( H  (A + B))., + a A d ~ + B ( l  + c t d . ) ,  (1.16) 

where A = D2~; B = Ddx/(1 + dx2); the dispersion term in the fight side of the second equation (1.16) now differs from that 

presented in [5, 6]. We note that the basic premises also differ here, since in [5] even in the nonsmooth bottom case it is 

assumed that the horizontal velocity u is independent of  y. We further note that in the discrete model (1.6), in contrast with the 

equations (I.16), the formal requirements on smoothness of the depth function d(x) are significantly weaker; specifically, infinite 

or very large accelerations do not arise if the bottom has a break or a segment with small radius of  curvature, as, for example, 

in the wave runup problem examined below. 

We should also say a few words about the points of free surface contact with rigid walls. The markers are also such 

points, i.e., they serve as the nodes of  the broken line approximating the free boundary. In contrast with the other particles, they 

can travel only along the rigid wall, i.e., they have a single degree of freedom ~i. Therefore in (1.6) there are no equations for 

them in the direction % The expressions for the derivatives of II  change somewhat for these particles. Thus, in the problem 

examined below of wave runup onto a shallow slope we have for the extreme marker with the number N, describing the motion 

of the "cutoff" point, we have 

Ofl pg 
o n  = o_g ( Y , , - t  - YN) (YN-t § 2y,,), ~ = 6" (x,, - x,,-l) (Y,,-t + 2yN). 
OxN 6 
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Fig. 3 

These expressions can be obtained both directly from (1.2) and also from (1.7), if we introduce a fictitious particle with the 

number N + 1 and set by definition XN+ 1 = XN, YN+ I ---- Yr~- 
2. Numerical Calculations. For the numerical solution of the system (1.6) we used the algorithm of [7], developed 

specifically for the discrete incompressible fluid models. As usual, in solving the nonlinear-dispersion shallow-water equations 

it becomes necessary to invert at each step in time an elliptic operator. Here this elliptic problem is the system of linear equations 

for finding at each step the Lagrange multipliers [7]. It is easy to show that for the given model the matrix of this system is 

tridiagonal, symmetric, and positive-definite. A marching procedure was used for its inversion. It is also not difficult to show 
that the numerical algorithm that we used is equivalent with respect to the number of  calculations to the simple explicit system 
for the equations (1.15), (1.16) in Lagrangian coordinutes. 

All the calculations were made for d o -- 1, g = 1, 0 = 1, which corresponds to nondimeusionalizafion of  the variables 

with the aid of  the scales do, V~-d o and t). The numerical experiments showed first of all that the described discrete model has 
even on a quite coarse mesh has solutions in the form of solitary waves, which by virtue of  the conservative properties of the 
model and the numerical algorithm propagate along the smooth bottom with constant mean velocity, amplitude, and energy. For 

a --- 1/3 these solutions were compared with the classical Rayleigh solitons 

rl ffi a sech2 [(x - xo) ~ .  (1.17) 

Thus, for the soIiton with amplitude a ffi 0.7 with values of the steps in space h = 1 and in time 7 --- 0.5 the maximal relative 

deviation of the numerical solution from (1.17) did not exceed, respectively, for the shape of the soliton and its phase velocity 
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Fig. 3 (continued) 

1 and 0.3%. For h = 0.5 and r = 0.25 the deviation decreased to 0.2 and 0.09%. The oscillations of  the wave total energy 

relative to the constant average value did not exceed, respectively, 0.005 and 0.003 %, i.e., they were very close to the roundoff 

errors. These calculations were carried out to values of the dimensionless time t = 400 or more. 
The next test was a comparison of the solitary wave runup calculations with the results of [8-10]. In the calculations 

presented below the bottom slope ~i near the breakpoint was calculated with the aid of averaging over three neighboring 

particles, although in principle this procedure is not mandatory and exerts some smoothing influence on the form of the free 

boundary only for large slopes. Figure 3 presents a series of  pictures, demonstrating the runup of  a solitary wave of amplitude 

a = 0.019 onto a gentle slope with cotangent of  the inclination angle 19.85. The free surface vertical rise profiles were derived 

with an interval At = 5. The results of  the numerical calculations using the discrete model (solid curve) are compared with the 

experimental points and with the approximate solution of the shallow-water equations (dashed curves) from [8]. 

Figure 4 presents for this problem the calculated (dashed curves) time dependences of  the free surface vertical rise at 

four fixed points on the sloping bank in comparison with the data of [8] (solid curves - -  experiment, dotted curves - -  theory). 

The calculations using the discrete model were made with t~ = 1/3 and r = 0.2, the value of  h varied from 1 on the smooth 

bottom to 0.2 near the "cutoff" point. The comparison shows that the discrete model, having because of account for dispersion 

a significantly broader region of applicability than the conventional shallow-water equations, in the present problem, where the 

dispersion effects are not significant, works no more poorly and describes quite well the runup process with the use of a quite 

coarse computational mesh. 

Figure 5 presents successive pictures of the runup of a wave with large amplitude (a = 0.19) onto a slope with an angle 

of 30 ~ . Here the calculated data (dashed lines) are compared with experimental data (solid lines) from [9]. The pictures are 

presented with a time interval At = 2.86. 
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TABLE 1 

~ao (o. deg) 

I0.000 
(5,7) 

3.732 

(15) 

3.333 
(16.7) 

2.747 

(20) 

2.000 

(26,6) 

1.000 

(45) 

0.030 
0.050 

0,050 
0.100 
0.200 

0 ,050  
0,I00 

0.050 
0.098 
0.193 
0.294 

0.113 
0.195 
0.29 
0.41 
0.50 

0.060 
0.113 
0.104) 
0.195 
0.200 
0.29 
0.41 
0.480 
0.50 

Maximal runup 

numerical and experiment 
asymptotic solu- 
tions [4,  8-10] 
(min-max) 

0.100--0.112 
0.180--0.212 

0.129--0.135 
0.308--0.308 
0.732--0.766 

0,122--0,150 
0,291--0,310 

0.11 I--0.127 
0.257--0.275 
0.599--0.600 
0.958--1.016 

[8, 9] 

0.173 
0.281 
0,599 

0.121 
0.264 

0.115 
0.252 
0.552 
0.898 

0.284 
0.526 
0,825 
1.220 
1.530 

0.115 

0.212 

0 .~4 

1.270 
w 

discrete shal- 
low-water 
model 

0.117 
0.217 (0.215) 

0.139 
0.309 
0.684 (0,687) 

0.134 
0.2.98 (0,295) 

0,125 
0.267 
0.567 
0.920 

0.27 
0.49 
0.79 
1.17 
1.49 

0.12.5--0.129 
0.24 

0.159--0.216 
0.44 

0.451 --0.504 
0,70 
1,03 

1.249-- 1.610 
1.30 

0.278 
0.497 
0.774 
1,142 
1.416 

0.125 
0,236 
0.209 
0.395 
0.404 
0.574 
0.795 
0.916 
0,951 

(0,926) 

(1,422) 

(0.953) 
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Finally, Table 1 summarizes the results of the numerical calculations and laboratory experiments of various authors 

with regard to maximal runup of solitary waves onto an inclined wall in the range of amplitudes from 0.03 to 0.5 and cotangents 

of the inclination angles from 1 to 10, taken from [4, 8-10]. Also shown here are the results of calculations using the discrete 

model for the same values of e~, z, and h as above. The magnitudes of the runup for values of ~" and h that are half as large are 

shown in parentheses for comparison. We see that the theoretical results that are available for this problem differ markedly from 
one another. The scatter of the calculated values sometimes reaches 20% or more. If we consider the experimental results, then 
the scatter increases still more. As a rule, the results of the calculations using the discrete model lie well within this range, 
except for the cases of waves of large amplitude for steep slopes, particularly for 0 = 45*. The latter is quite understandable, 

since the assumptions made in the derivation of the model concerning the distribution of the velocities with regard to depth are 

physically justified, strictly speaking, only for I dx [ '~ I. The calculations show that the magnitude of the runup in this problem 
is actually described quite well for Idxl ~ 1/2. 

The drawbacks of the described model include the upper limit on the spatial step h, following from the dispersion 
relation (1.8). It is easy to see that for the shortest numerical harmonics with wavelength X = 2h the phase velocity c 2 = 

(o~/k 2) = (h2/3x2ct) increases without limit with increase of h. For h > 7rwr3-& this leads to qualitative change of the dispersion 

law, when the phase velocity has a maximum that is greater than unity in the short-wave region. Because of this, for such values 

of h the shape of the long waves is distorted, for example the shape of the solitons of very small amplitude, for which the 
selection of a coarse step would seem to be quite acceptable from similarity considerations. 
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